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Abstract A semi-implicit semi-Lagrangian mixed finite-difference finite-volume model for the shallow
water equations on a rotating sphere is considered. The main features of the model are the finite-
volume approach for the continuity equation and the vectorial treatment of the momentum equation.
Pressure and Coriolis terms i the momentum equation and velocity in the continuity equation are
treated semi-implicitly. Discretization of this model led to the introducion, n a previous paper, of a
splitting technique which highly reduces the computational effort for the numerical solution. In this
paper we solve the full set of equations, without sphtting, ntroducing an ad hoc algorithm. A von
Newmann stability analysis of this scheme is performed to establish the unconditional stability of the new
proposed method. Finally, we compare the efficiency of the two approaches by numerical experiments on
a standard test problem. Results show that, due to the devised algorithm, the solution of the full system
of equations is much more accurate while skghtly increasing the computational cost.

Introduction

Semi-Lagrangian approximations have been adopted as the basis of several
high resolution operational numerical weather prediction models (Ritchie and
Beaudoin, 1994; Ritchie et al., 1995). Their principal advantage is the potential
for long time steps. Staniforth and Coté (1991) provide an exhaustive review of
the early development of semi-Lagrangian methods.

Several other advantages of the Semi-Lagrangian approach have been
identified, such as two-time-level schemes in gridpoint models (McDonald and
Bates, 1989) and linear grids for spectral models (Williamson, 1997).

Recently, Bartello and Thomas (1996) discussed the cost-effectiveness of semi-
Lagrangian advection schemes. Their conclusions are completely consistent with
the fact that these schemes present an enormous time-step advantage in large
scale models with quasi-geostrophic dynamics; they may still be advantageous
for stratospheric models, whereas there is reason to believe that below the
synoptic scale in the troposphere their cost-effectiveness is severely reduced.

The split-operator approach is a popular solution algorithm in CFD:
operator-splitting techniques have been widely utilized, for example, in
atmospheric modeling studies (Hundsdorfer, 1996) to decouple reaction from
convection and diffusion, or convection from diffusion. For the incompressible
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Navier-Stokes equations, the method decomposes the momentum equation to
solve the linked pressure-velocity problem (Rosenfeld et al, 1991). Though
conventional shallow water flow equations have no such problem, in
atmospherical shallow water equations there is a similar link between the
Coriolis and pressure gradient terms.

We present a numerical model of the inviscid shallow water equations for
atmospheric circulation and discuss the effectiveness of the split-operator
approach for this problem, comparing the “split” and the “full” versions of the
solution algorithm.

The proposed model possesses some specific features, not yet considered in
the meteorological literature:

discretization of the momentum equation in vector form to face the pole
singularity arising from the spherical geometry (as proposed by Bates et
al., 1990);

semi-implicit treatment of the Coriolis and pressure terms in the
momentum equation and of the divergence terms in the continuity
equation to obtain unconditional stability;

+ a finite volume approach for the continuity equation to obtain
conservation of the geopotential height;

- semi-Lagrangian treatment of advection, with a substepping procedure
as in Casulli (1990) to allow long time steps while retaining accuracy;
solution of the full system of equation using ad hoc algorithms, like
restarted preconditioned GMRES and Generalized Conjugate Gradients,
allows us to achieve a good accuracy at a low cost.

The model
Let us consider the inviscid shallow water equations in spherical components
& = —fkxV-V,®
(1)

W LV, (PV)=0
Here we use curvilinear coordinates x and y, with dx = R cos pd\, dy = Rdy;
A, p are longitude and latitude, respectively, and R is Earth radius; V = («,v)
is the wind field with curvilinear components toward the east and the
north, respectively; f is the Coriolis parameter, V), is the horizontal gradient

operator:
v (2 9\_( 1 010
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Finally, ®'(x,y,1) is a time-dependent perturbation of the geopotential height
field ®(x, y,¢) about a mean value ®°(x,y): &' = & — P*.



The “full” numerical scheme

To discretize system (1) we use a uniform grid in (), ¢) variables. The wind
components and the geopotential height are staggered as in the Arakawa-C
grid: for each cell D;; centered on (\;, ;) the geopotential @ is located at the
centre (indexes 7,j), the # component at the midpoint of the left and right
boundaries (indexes 7 + 1/2,7) and the v component at the mid point of the top
and bottom boundaries (indexes 7,7 £+ 1/2).

For the continuity equation we adopt a finite-volume discretization, which
ensures the conservation of the total geopotential height (as proved in Carfora
(2000), generally missed in semi-Lagrangian schemes. In this discretization, the
transient term is obtained by first-order difference in time and assuming @ is
constant over the cell; in the divergence terms, the height field will be taken
explicitly, whereas the velocity components will be treated semi-implicitly to
obtain the unconditional stability of the method, as will be shown in the section
headed “Stability results”. Then we have the following approximation:

Ay @ - @) /At

Ay(® — &Y., (W;f%}j + (1 — O )—

i+ i+3, ]
Ay(® — @) (9”§T11/z,j +(1- 9)”?—1/24') + (2)
Axje1/2(P = D) (97’?;111/2 +(1- 0)”?.#1/2) -

Axj_1/2(® — ‘1)3)27‘_1/2 (9”?;11/2 +(1 - 9)%71/2) =0

where we indicated with A; the area of the cell D; ;; the implicitness parameter ¢
isin [0, 1].

This approximation still holds for triangular cells, where the value of the
variable v at only one location is involved.

For the momentum equation we use a semi-Lagrangian approach starting
from its vectorial formulation and again choose to treat implicitly the Coriolis
and pressure terms to obtain unconditional stability of the numerical scheme.

Although not common in meteorological literature, the choice of using a
Lagrangian discretization for the momentum equation and a Eulerian one for
the continuity equation, first introduced by Casulli (1990), is the basis for
several models of tidal circulation (see, for example, Cheng et al., 1993) and its
use is consolidated in hydrodynamical literature.

The discrete momentum equations we obtain are:

n+1 n+1 u
o () =) (5) @

where the first scalar equation is collocated on the #-grid and the second one on
the v-grid.
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The “Lagrangian terms”, the terms to be evaluated at departure points of the
characteristic lines, are given by:

L [Ny N2 u +f(1 - G)UAZL - (1 — Q)qu)x 71. (4)
L) 721 722 v —f(l — Q)MALL - (1 — H)qu)y B
The coefficients 7;;, obtained by geometric considerations, relate the
coordinates of arrival and departure points of the trajectories, which we

indicate with (A, ) and (., ¢.), respectively. For completeness we recall here
the expression for these coefficients:

711 = cOs O
r2 = —sindAsing
721 = sin 0 Asin ¢,

729 = cos 6\ sin p sin ¢, + cos p cos @,

Formal substitution of ! and v"*! in the approximated continuity equation
leads to a nine-point scheme for ®”+1:

[Aj T PAL (CHIJ + G+ Dy + D”__)
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YN (DZ» oy T OAH(E; ; — Ei )) @77
AP (D~ OAHE,y; — Eryy) )@
~PAP(E,y, ~ E) @0
AP (=Ey; + B )@
~PAP (B, + B )@,
—PAL (B —Eijo %)(I)znjlljfl
= A4;®7; — (1 - 0)At [Ay (I{HIJ Uisij — H-,;Jul -J)

+Ax; +1H +1 vzg+1 - Ax]_l}]l]__ ij— %i| (5)
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where

C. Hz‘+%,f Ay
R Ay

D Hij Axjiap
YR Fap Ay

1

Ejj = ZEHZ‘,;"

and H;; = 7, — @}

=14 fAPAL.

The “split” numerical scheme

The choice of discretizing implicitly in time Coriolis and pressure terms in
the momentum equation leads to the presence of asymmetric extra-
diagonal terms in the linear system to be solved. These terms, and the
presence of “mixed” derivatives of the geopotential, ®, in the #-equation
and @, in the v-equation, increase the computational effort for the solution
of the system.

For these reasons, in a previous work (Carfora, 2000) we considered a
simplifying approach by the introduction of a splitting technique. The basic
idea was to split the momentum equation in two parts by considering the total
derivative of velocity as the sum of two terms: first (step 1), we take into
account only the contribution due to Coriolis terms; then (step 2) the
contribution due to pressure terms.

We stress that we introduced two different implicitness parameters (# and
1) for the two steps; this choice has been explained by stability considerations.

Introduction of the splitting technique leads to some simplifications in
system (5): in fact, the momentum equation (3) reduces to:

£ (8 () -0ons(s),

where now the corresponding expressions of equation (4) for the terms £
contain only Coriolis terms:

<£u>_ 1 ( 1 felAt><1’1’1 7’12)(% +f(1—91)UAt>n'
LY )1+ AR\ —fO At 1 71 ra2 J\v—f(1—61)ult)
(7)

It follows that the linear system to be solved for the geopotential reduces
to:
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where the same notations of system (5) have been used, except for the terms £,
defined by equation (7).

The semi-Lagrangian terms
To solve any of the two numerical schemes presented (3-5) and (6-8), the
evaluation of the “semi-Lagrangian terms” £ in equation (4) or in equation (7),
respectively, requires the velocity components #” and ¢” at the departure points
of the characteristic lines.

To determine these departure points we integrate (backward in time) the
following system of ordinary differential equations (the “characteristic
system”) from time #*! to #* at any vertex of the « grid and v grid:

R&Xcosp = u(\ ) 9)
R%E = v(\ ).

In order to reconstruct more accurately the characteristic lines we use a sub-
stepping procedure first introduced by Casulli (1990) and solve the system of
ordinary differential equations evaluating ), 6 in N intermediate time steps 73,
where N is chosen with a global condition on the Courant numbers such that in
any substep

|u|At |v|At
X , <1
NAx NAy

Two different numerical schemes have been tested: the first one is the explicit
Euler method, which is first-order accurate:



AED = @
R cos ¢®) (10)
(k)

k1) — ) _ Y

' 2 T R

The second method is the (Runge-Kutta) Heun method, which is second-order
accurate:

( (%)
NG O
’ TRcoscp(k)
(k)
pkh = ¢<k>_7%
_1
oD )\(k)—T kD u® (11)
2 | R cos k- R cos p®)
(k=) v(k)
(k=1) h _T Y v
4 ol R TR

Then, values of # and v at the foot of characteristic lines are determined by
bicubic Lagrange interpolation. Particular attention has been paid to the
interpolation procedure near the poles: as described in detail in Amato and
Carfora (2000), for the “border cells” a suitable use of the variables in grid points
across the pole allows us to retain the same accuracy of the “internal cells’.

Stability results

In this section we prove the unconditional stability of the linearized system of
equations (2) and (3) in the case where the implicitness parameter 4 is in [0.5, 1].
The proofs of the following theorems are quite technical; however, we report
them here for completeness.

To obtain from equations (2), (3) and (4) the linearized discrete equations we
do some simplifications: if we indicate with f a constant value for the Coriolis
parameter and with /7 the mean geopotential height, we can introduce the
constants K; = VH/Ax; and K = VH/Ay; also we introduce the new

variable ¥ = ®/ \/H; moreover, we assume that Aj = Ax;Ay and that

ijJr% = ij = Ax]-_%.
With these positions, we obtain the system:
Wik = fOAwL oKW - ) = £
fonul w ot oK Ar(wi - i) = o2

\I’"+1 + oK. At( n+1
— v (1- 9)KAt<

T/tn+11 )

M
%J)

+9KAt(v”;fl ﬁ_{)
—(1- 0K At(v v

i l]f%

(12)
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Then we introduce a Fourier mode for the dependent variables #, v and ¥ and
carry out a stability analysis on the corresponding amplitude functions. We
write the equations for a single mode #w"e*¢/?, where w" is the amplitude of the
variable w (w standing for «, v, ¥) at the time level #:

BWi’lJrl — RCW”
where at the time level 2
w = (@7, 7");
1 —fOAt  200ALK;sin(%)
B= fOAL 1 2I0ALK sin(3)
2I0AtK;sin(3)  2I0ALK sin(3) 1

where E is the amplification factor of the interpolation procedure (we suppose
|E| =1) and

1 f(1—0)At —2I(1 — ) AtK; sin(3)
|  —ra-eat 1 ~2I(1 - ) ALK sin}) |
—2I(1 - 0)AtK;sin(5) —2I(1 — §) AtK sin(3) 1

To obtain a necessary condition on the stability of the numerical method we
have to show that the spectral radius of the amplification matrix B~ RC is not

greater than 1.
To do that, we need a preliminary result.

Lemma 1 It is

A 1/2
—1 _ _
il = (14020017

where A = (fOAL)” + 4(K? sin’(x/2) + K2 sin®(y/2)).



Proof. Since B~'C is a normal matrix (a matrix M is said to be normal iff it
commutes with its conjugate transpose), its L, norm coincides with its spectral
radius. Then it suffices to evaluate the eigenvalues of B-1C. They are

1-01—-0A+IVA
)\1:17 AZ.S: (1+0)2A

Then,

A 1/2
|)\273| =\ )\2)\3 == (1 + (1 - 29) m)

and, since this last quantity is not less than A\; = 1, this is exactly the spectral
radius of B~!C.

Theorem 1 The spectral radius of the amplification matrix of the linearized
system (equationl?2) is not greater than 1 iff the implicitness parameter 0 is in
[0.5,1].

Proof. From the definition of eigenvalues it is self-evident that B-—'RC and
RCB! have the same eigenvalues, and then the same spectral radius.
Moreover, it is well-known that, for any matrix M, p(M) < ||A||. Finally, since
R is a submatrix of an orthogonal (rotation) matrix, it is ||R|| < 1. These three
considerations lead us to the desired result: since it is

p(B~'RC) = p(RCB™") < ||[RCB~||5 < |IR||,/|CB"],
by application of the previous lemma we have

A 1/2
71 _ A
p(B7IRC) < <1+(1 29)1+92A)

and this quantity is not greater than 1, provided that 1 — 20 < 0,1.e. 6 > 0.5.

In Carfora (2000) a corresponding result for the unconditional stability of
the split numerical method was proven, with a suitable choice of the
implicitness parameters 6 and 6;; moreover, a sharp estimate of the
instability due to Coriolis terms was obtained. Indeed, the following theorem
holds:

Theorem 2 It is
1< [IB7'C|l,

1+/2(1 — 6))*Ar2 _/1 1\
< 1 2|/H(— +— 1—6)At (13
max( \/ T reae )7 TR (1-0)At (13)
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Then, the considered numerical method is unconditionally stable for 6 =I
provided that 0, € [0.5,1]. Moreover, for 6, € [0,0.5) we have

|B7IC|l, = 1+ f2AF. (14)

Computational issues
The numerical solution is obtained by solving a linear system for the
geopotential height.

For the split scheme the matrix obtained from system (8) is sparse,
symmetric and strictly diagonally-dominant with only seven non-zero
diagonals, since for periodicity reasons on the Earth’s surface the five-points
scheme leads to a seven-diagonals structure. The system can be solved by a
classical Conjugate Gradients algorithm with a simple diagonal preconditioner,
as described in Carfora (2000).

For the full scheme the matrix obtained from system (b) is also sparse and
band-structured with only 15 non-zero diagonals.

The author tested on this problem the Generalized Conjugate Gradients
algorithm introduced by Concus and Golub (1976) and found that this
algorithm performs really well on this kind of “nearly-symmetric” system,
where the symmetric part of the involved matrix is dominant over the
antisymmetric part: indeed, we found that this algorithm costs approximately
three times more than Conjugate Gradients, since it requires about three
Conjugate Gradients calls per timestep.

However, this system can be solved even more efficiently by Restarted
GMRES (Saad and Schultz, 1986) combined with a suitable preconditioner. The
results we show in the following Section confirm the good cost-effectiveness of
this algorithm.

Numerical experiments
We performed some numerical experiments to compare the two versions of the
numerical method, that we indicated as “full” and “split”.

To do this, we solved one of the test problems proposed by Williamson et al.
(1992). In the last few years, this set had been used for the validation of several
shallow water numerical models of the atmosphere.

Our test is a steady state solution to the non-linear shallow water equations,
that is a solid body rotation or zonal flow with the corresponding geostrophic
height field.

The test comprises an initial height profile (for simplicity, a cosine bell)
which rotates with constant angular velocity €2 around the Earth’s axis
(through the Poles) and we consider this rotation in a spherical coordinate
system (A, ¢) having its North Pole at point P (not coinciding with the physical
North Pole (NP) in general). If (0, @) are NP coordinates in this system, the
analytical solution to this test problem is given by:



2
O =P) — [QRMQ + %] (cos A cos p sin g + sin @ cos o) (15)

whereas wind components are

U = uplcosycos gy + cos Asin ¢ sin o) (16)
v = —upsin Asin g
and where uy = 27R /12 days and &y = 2.94 x10*m?/s?.

We tested our model on a slightly rotated grid (o = 0.05 rad) and on a fully
rotated grid (pp = 7/2—0.05 rad).

In both cases, executions were made for several values of At and for the grid
resolution of 180 x 90 grid points.

According to the stability results, in the “full” scheme (equations (3)-(5)) we
set 8 = 0.5, whereas in the “split” scheme (equations (6)-(8)) we set =1,
61 = 0.5.

The global relative errors on the retrieved fields in L;, Ly and L., norms
(indexes 1, l», I..) have been calculated after five days of simulation.

Tables I and II compare the accuracy of the two schemes showing the error
indicators for the geopotential and for the wind field after a five-day simulation
in the case of a slightly rotated grid (py = 7/2 — 0.05 rad). Tables IIl and IV
make the same comparison for the fully rotated grid (¢ = 0.05 rad).

For the “full” scheme, we report here the results obtained with the two
considered solution algorithms (Restarted GMRES and Generalized CG).

These tables show that the accuracy of the method, in both cases, does
not depend on the rotation of the numerical grid. Indeed, the case of a full-
rotated grid, with higher Courant numbers, gives the same error levels of a
slightly-rotated grid. In all the considered cases, the full scheme (in its two
variants) is much more accurate than the split one. Moreover, the GMRES
version is slightly more accurate than the GCG version of the full scheme.

Finally, Table V shows the cost of the schemes in terms of computer time.
Tests were performed on an Alpha Server 2100/250. This machine is rated at
about 120Mflop/s in the LINPACK benchmark. They confirm that the full
scheme costs about three-four times more than the split scheme.

Split scheme Full scheme — GMRES Full scheme — GCG
At Li(®)  La(®)  Lo(®) Li(®)  La(®) Lao(®) Li(®) L2(P) Loo(®)

5 02721 0.300e-1 0.460e-1 0.112e-3 0.122e-3 0.196e-3 0.115e-3 0.132e-3  0.373e-3
100 0.505e-1 0.562e-1 0.926e-1 0.256e-3 0.277e-3 0.383e-3 0.290e-3 0.354e-3 0.155e-2
20" 0.880e-1 0.989%-1 0.178 0.662e-3 0.723e-3 0.105e-2 0.102e-2 0.130e-2 0.752e-2
40 0137 0.155 0.292 0.255e-2  0.300e-2 0.604e-2 0.452e-2 0.583e-2 0.283e-1

Notes: Grid 180 x 90 — North Pole at 7/2 — 0.5 rad.; T max = 120 hours
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Table II.

Comparison of the
error indicators for the
velocity in a slightly
rotated grid

However, it must be stressed that, in this series of tests, all the schemes use a
simple diagonal preconditioner. It has to be expected that, with a “tailored”
implementation of the GMRES solution algorithm in the full case and a suitable
choice for the preconditioner, the cost of this last scheme will decrease, leading
to a far more competitive algorithm.

Split scheme Full scheme — GMRES Full scheme — GCG
At Li(v) Ly(v)  Lo(v) Li(v) Ly(v)  Lo(v) Li(v) Ly(v)  Ly()

5 08721 0988e-1 0125 0.142e-2 0.169e-2 0.244e-2 0.145e-2 0.171e-2 0.378e-2
100 0.165 0.184 0.227  0.266e-2 0.328e-2 04722 0.291e-2 0.348e-2 0.902e-2
200 0.296 0.323 0382 0.541e-2 0.647e-2 0936e-2 0.70le-2 0.836e-2 0.412¢-1
40 0481 0.512 0579  0.13%e-1 0.140e-1 0.184e-1 0.229-1 0.271e-1 0.126

Notes: Grid 180 x 90 — North Pole at 0.5 rad,; T max = 120 hours

Table III.
Comparison of the
error indicators for the
geopotential in a fully
rotated grid

Splitted scheme Full scheme — GMRES Full scheme — GCG
At Li(®)  Ly(P) Loo(®) Li(P) Lo(P) Loo(®) Li(P) Lap(®) Loo(P)

5  027lel 02991 0.459%-1 0.65le-4 0.786e-4 0.158e-3 0.722e-4 0.890e-4 0.207e-3
100 0.505e-1 0.56le-1 0.926e-1 0.150e-3 0.166e-3 0.320e-3 0.231e-3 0.281e-3 0.689%-3
200 0.880e-1 0.988e-1 0.178 0.463e-3 0.529-3 0.827e-3 0.904e-3 0.110e-2 0.264e-2
40 0.137 0.155 0.292 0.242e-2  0.305e-2 0.651e-2 0.409e-2 0.506e-2 0.116e-1

Notes: Grid 180 x 90 — North Pole at 7/2 — 0.5 rad,; T max = 120 hours

Table IV.
Comparison of the
error indicators for the
velocity in a fully
rotated grid

Splitted scheme Full scheme — GMRES Full scheme — GCG
At Li(v) Ly(v)  Lo(v)  Li(v) Ly(v)  Loo(v) Li(v) Lo(v) Loo(v)

5 08681 0985e-1 0126 0.107e-2 0.126e-2 0.783e-2 0.112e-2 0.132e-2 0.822e-2
100 0.164 0.183 0227 0.20le-2 0.245e-2 0.521e-2 0.254e-2 0.296e-2 0.784e-2
200 0.296 0.322 0382 0421e-2 0.508e-2 0.138e-1 0.753e-2 0.846e-2 0.227e-1
40 0479 0.511 0.579  0.118-1 0.135e-1 0.393e-1 0.285e-1 0.310e-1 0.727e-1

Notes: Grid 180 x 90 — North Pole at 0.5 rad.; T max = 120 hours

Table V.
Execution times for the
three algorithms

Timestep NP latitude Time (split) Time (fullGMRES)  Time (full-GCG)
10 /2 —0.05 9 46’ 44
10 0.05 18 80 63’
40 /2 —0.05 16’ 68 56’
40 0.05 28 112’ 91




Conclusions

In this paper, we have presented a gridpoint numerical method for solving
the atmospherical shallow water. Its unconditional stability, conservation
properties and potential for long timesteps, along with its ease of
implementation, make it an attractive prototype for a global circulation
model.

We also introduced the split of the shallow water equations for the
atmosphere, supposing that, as in other fields of CFD, we could obtain a real
improvement in the efficiency of the considered numerical method. After a
series of numerical experiments, performed on the standard test set for
atmospheric shallow water (Williamson ef al, 1992), we have found that, for
this particular problem, the splitting technique is not effective, since the price
we pay to reduce the computational cost is too high in terms of loss of accuracy;
it will be preferable to solve the full system of equations, while considering
some other improvements to accelerate the solution of the scheme or to reduce
the cost of the evaluation of some terms.
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